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1. Introduction 

Ferrites are magnetic oxide materials that are extensively used in microwave circuit applications. 
Their magnetic and thermal properties can be varied by altering their chemistry, which is based on 
iron oxide, by substituting other oxides. Typically, ferrites are produced by milling oxide powders of 
the desired composition, followed by molding into the desired shape. The final fabrication step is a 
high-temperature sintering operation that both consolidates the powder and volatilizes any binding 
agents used in molding.' 

In one current application of interest, ferrite cores are to be mounted to a circuit board using epoxy for 
use in a high-frequency circuit in a spacecraft power supply. The cores are composed of manganese 
and zinc oxide in addition to iron oxide (Mn-Zn ferrites). 

Recently, a program using these cores switched ferrite vendors to materials having lower porosity and 
higher intrinsic strength. While several surfaces of the parts are machined after sintering, the bonding 
surface is used in the as-sintered condition. The new vendor's cores were characterized by grooves in 
the as-sintered bonding surface that are probably a result of tooling used during molding. In addition, 
the contractor's criteria for accepting a core as flightworthy includes a maximum size for chips 
observed on the edges of the cores. The effect of these defects on the strength of the cores is not 
known. Strength testing of the cores has been conducted,2 but those tests stressed different regions of 
the cores and were used to evaluate bonding. These parts have potential use in multiple programs' 
hardware, so understanding their mechanical behavior is of great interest. 

Finite-element analysis (FEA) was used to evaluate whether a simple proof test could be designed 
that would estimate the strength of the parts in the presence of these flaws. The benefit of a proof test 
is that it would both demonstrate the ability of flawed parts to withstand a minimum stress and allow 
a greater number of parts with these processing and handling flaws to be considered flightworthy. 
The requirements for a simple proof test were as follows: 

Easy to implement and perform using existing fixtures and test equipment 

•     The defects of interest would be subjected to tensile stresses, which are the cause 
of failure in brittle materials. 

The flaws of interest would be placed under sufficient tensile stress to initiate 
failure: large stress gradients across the tensile surface could lead to failures 
occurring consistently away from the flaws. 

Three- and four-point bend tests could be used to meet the first two criteria, while the results of FEA 
modeling would be used to judge the tests in light of the third. 

"A Review of Ferrites for Microwave Applications," Proc. IEEE 63(5), pp. 777-789, 1975. 
Witkin, D. B., Aerospace Technical Report in preparation 



2. Experimental Procedure 

A planar ferrite core is shown in Figure 1. The length and width of the parts are nominally 0.907 in. 
and 0.492 in., respectively. The disk in the center of the core has a diameter of 0.314 in. and pro- 
trudes 0.099 in. above the flat surface of core. The legs at the ends of the core also protrude 0.099 in. 
above the surface and measure 0.0615 in. at their minimum width and 0.105 in. at their maximum 
width. The minimum width of the leg is located in the middle of the part. The top surface of the core 
is in the as-sintered condition. The tops of the central disk and the legs are all ground to the desired 
size. The bottom surface of the cores (not visible in Figure 1) is also ground to the desired flatness 
and part thickness. 

Two 3-point bend tests were initially conducted in which the part was supported on two outer rollers 
positioned under the machined top of each leg, and the load was applied to the center of the part on 
the bottom machined surface by a third roller (Figure 2). This test put the as-sintered surface in ten- 
sion. In addition, a deflection gauge was used to measure the downward displacement of the central 
disk during the test. The ferrite cores failed along the edge where the disc protrudes from the surface 
of the part at a load of approximately 13 lb, after 0.00056 in. of downward displacement along the 
surface of the disc. 

Figure 1. Planar magnetic ferrite core, top surface. 



Figure 2.   The core inverted in the 3-point bend testing fixture. The top of each 
leg was supported on a roller, while the load was applied on the bottom 
surface of the core. 



3. Finite-Element Analysis 

The experiment was modeled by finite-element analysis. A quarter of the ferrite core was modeled by 
taking advantage of the problem's two symmetry planes. The ferrite core is made of manganese-zinc 
ferrite, which has a Young's modulus of 21 Msi and Poisson's ratio of 0.32. As a boundary condition 
to represent the outer rollers, the center line of the leg is fixed in only the vertical direction. In all 
cases, the top surface of the ferrite core was displaced to match the displacement that was measured 
experimentally at the center of the bottom surface of the disc. For the models of the 3-point bend test, 
the displacement of the top surface was applied at the centerline. For the models of the 4-point bend 
test, the top surface displacement was applied off the centerline, as mentioned in greater detail below. 



4. Results 

For the 3-point bend test, a displacement of 0.00059 in. was defined at the top center of the part, 
which resulted in 0.00056 in. of displacement on the bottom center of the part, as was observed dur- 
ing the laboratory tests. Figure 3 displays a contour plot of the tensile stress on the bottom of the part. 
The largest tensile stress occurs along the bottom edge of the disc, with a magnitude of 15.0 ksi. 

The first 4-point bend test model had the innermost loading line defined at 0.157 in. from the center 
of the part, which made the span of the two loading rollers equal to the diameter of the central disk. 
The displacement of the loading line was defined to be 0.00053 in., which resulted in 0.00056 in. of 
displacement on bottom center. Figure 4 displays a contour plot of the tensile stress on the bottom of 
the part for the first 4-point bend simulation. The largest tensile stress occurs along the bottom edge 
of the disc, with a magnitude of 18.8 ksi. 

The second 4-point bend test model had the innermost loading line defined at 0.25275 in. from the 
center of the part, or roughly halfway from the center to the edge of the core. The displacement of the 
loading line was defined to be 0.00042 in., which resulted in 0.00056 in. of displacement on bottom 
center. Figure 5 displays a contour plot of the tensile stress on the bottom of the part for the second 
4-point bend simulation. The largest tensile stress occurs along the bottom edge of the disc, with a 
magnitude of 12.5 ksi. 
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Figure 3. Three-point bend simulation results. 
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Figure 4. The first 4-Point bend test with top displacement of 0.00053 in., resulting in 0.00056 in. of 
displacement on bottom center. 

Hco:. Principal 
•/en 75%) 

+1.249e+0J 
tl. 119e+C14 
+9.898e+0 3 
+ 8.60 3e+0 3 
+7.3O6e+0 3 
+6.013e+0 3 
+4.718e-t0 3 
+ 3. 42 3e+0 3 
+ 2. 128<M33 
+8. 3 3 3f?+02 

•J.616e+02 
1.756e+0 3 

- 3.051e+03 

Figure 5.   The second 4-Point bend test with top displacement of 0.00042 in., resulting in 0.00056 in. 
of displacement on bottom center. 

The third 4-point bend test model had the innermost loading defined at 0.3485 in. from the center of 
the part. This placed the loading rollers at the maximum width of the leg. The displacement of the 
loading line was defined to be 0.00025 in., which resulted in 0.00056 in. of displacement on bottom 
center. Figure 6 displays a contour plot of the tensile stress on the bottom of the part for the third 4- 
point bend simulation. The largest tensile stress occurs along the bottom edge of the disc, with a 
magnitude of 11.3 psi. 
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Figure 6.     The third 4-Point bend test with top displacement of 0.00025 in., resulting in 0.00056 in. 
of displacement on bottom center. 
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5. Conclusions 

A finite-element analysis (FEA) was performed on a ferrite core part. A 3-point bend test and three 
different geometries of 4-point bend tests were modeled to determine the distribution of tensile stress 
on the bottom of the part. The objective of the FEA was to understand the tensile stress distribution 
under simple 3- and 4-point bend loading conditions that would be easily implemented as a proof test. 

The ideal test scenario generates a minimum stress gradient to achieves nearly uniform stress levels 
throughout the entire tensile surface of the part. The simulations indicate that the largest tensile stress 
is between 18.8 and 11.3 ksi. For the molding defect location, the calculated stresses for these two 
scenarios are approximately 0.27 and 0.53 of this maximum, respectively. Because these are rela- 
tively small fractions of the maximum, it is unlikely that these loading scenarios could function as 
proof tests. For failure to occur in the molding defect location or along an edge of the part at a chip 
out, the strength of the defect would have to be much smaller than the strength of the corner between 
the central disk and the as-sintered surface. 

The location of the predicted maximum tensile stress was corroborated by the failure locations in the 
two three-point bend tests that were performed. According to the model, the failure load was 
equivalent to a tensile stress of approximately 15 ksi. At the time of failure, the molding defects in 
the part were under a tensile stress of approximately 4 ksi. In either the three- or four-point bend test 
configuration, the failure location would need to sustain a significantly higher load in order for the 
stress at the defect location to approach 15 ksi. Our experience in strength testing these ferrite cores 
in other testing configurations suggests that it is statistically unlikely that the parts could sustain a 
much higher load to induce failure at the defect location or along the edge. The stress distribution in 
the ferrite cores under different loading conditions in other applications will determine whether vari- 
ous fabrication and handling defects create a risk of cracking, fracture, or other structural failure. 
Should such a risk present itself, a more sophisticated proof test would be necessary. 
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